

Macronutrient Management in Hazelnuts: Comparison of Oregon and OMAFRA's Guidelines over Farmer's Practice in Ontario

Tejendra Chapagain, PhD, PAg

March 02, 2023 The Ontario Hazelnut Association (OHA), Brant Sports Complex, Ontario

- Essential Plant Nutrient Management in Hazelnuts
 - 1. Primary nutrients
 - 2: Secondary nutrients
 - 3: Micronutrients
- > Hazelnut Fertility Trials in Ontario
 - 1: Objectives
 - 2. Materials and Methods
 - 3. Results and Discussion
- > Take Home Messages
- Acknowledgements
- > References

Essential Plant Nutrient Management in Hazelnuts

Essential Plant Nutrients

From the air and water: Carbon, Hydrogen and Oxygen

Deficiency Symptoms: Some Facts

Symptoms can be confusing...

- > Symptoms first apparent in young leaves: **S, Fe, Cu and Mn**
- > Symptoms first apparent in old leaves: N, P, K, Mg, Zn and Mo
- > Symptoms seldom apparent on older growth: Ca and B
- > Retarded growth with leaf chlorosis: N, S, Cu
- \succ Retarded growth without leaf chlorosis: **P**
- > Yellowing of older leaves: N
- > Yellowing of younger leaves: **S**

Macro-nutrients: Nitrogen Management

Nitrogen Yellowing of older leaves (chlorosis), thin stems, stunted growth are major symptoms of deficiency.

- Apply N in small amount starting 3rd year of planting, full rate in 8-10 years.
- Apply in early spring as a banded ring around each tree under the drip line.
- > Split application improves N utilization.
- > Avoid N fertilizers contacting the trunk.

Age (year)	Apply this amount of N (lb/tree)
0–2	0
	(unless time-release N is used)
3–5	0.25-0.33
6–7	0.33-0.50
8–10	0.50-0.75
Olsen, 201	3; OMAFRA Pub 863

Critical N values in hazelnut leaf tissue and required N: Olsen, 2013

Leaf N in August (%)	Status	Apply this amount of N (lb/tree)
Under 1.8	Severe deficiency	3.0 (2 years)
1.8–2.2	Deficiency	2.0-3.0
2.2–2.5	Optimal	1.5–2.0
Over 2.5	Excess	0

Macro-nutrients: Phosphorus Management

Phosphorus

Reddish or purplish lower leaves, poor flowering and fruiting, pre-mature nut drop.

- Application rate depends on soil and plant tissue analysis.
- Coarse sandy loam soils (+ manure) often contains high level of phosphorus.
- Fall (October) or early spring (May) application as a banded ring is suggested.
- ➢ Not recommended in Oregon.

Critical P value (%) in leaf tissue (August): Deficient: <0.13; Normal: 0.14-0.45; Excess: >0.55.

Olsen, 2013; OMAFRA Pub 863

Macro-nutrients: Potassium Management

Potassium Leaf tips and edges turn yellow to brown, trees become susceptible to stresses.

- Apply MOP (KCl) in the fall or before mid-February as a banded ring – to avoid chloride toxicity.
- Consider Potassium Sulphate for early spring applications.
- A single application usually is effective for 2 years or more.

K₂O rate for new hazelnut orchard

	Apply this amount of K ₂ O
Soil test for K (ppm)	(lb/acre)
0–75	300-400
75–150	200-300
Over 150	0
Olsen 2013 OMAT	RA Pub 863

Macro-nutrients: Potassium Management

Leaf K in August (%)	Status	Apply this amount of K ₂ O (lb/tree)
Under 0.5	Severe deficiency	8–10
0.5-0.7	Deficiency	6–8
0.7–0.9	Borderline (test again in 1–2 years)	0
Over 1.0	Optimum	0

Critical K value (%) in leaf tissue (August)

Olsen, 2013; OMAFRA Pub 863

Hazelnut Fertility Trials in Ontario

Jenny Liu and Tejendra Chapagain

The Problem and Objectives

Statement of the Problem:

No fertility recommendations exist for Ontario-grown hazelnuts

Objectives:

Look at how four different fertility treatment regimes will impact hazelnut growth and yield in Ontario:

- > Ontario's guidelines for other tree fruits
- Modified Oregon's guidelines for hazelnuts
- Grower's practice
- Control (with no external fertilizers)

Variety: Yamhill

Steps and Timeline

Phase	Description of Work	Start and End Dates	
Phase One	Identified 3 sites (hazelnut orchards) across	February - March	
I hase One	Ontario.	1, 2022	
Phase Two	Surveyed with growers to collect general	March-April,	
I Hase Iwo	and historic information for each site.	2022	
Phase Three	Baseline soil sampling and analysis to	A mril 2022	
	initiate fertility trials.	April 2022	
Dhase Four	Begun trials with NPK in hazelnut	Mar. 2022	
rnase rour	orchards across Ontario.	Wiay 2022	
Phase Five	Observed micronutrient deficiencies in	June-August	
	Hazelnut during the season.	2022	
Phase Six	Fall soil and plant tissue sampling for		
	analysis	August, 2022	
Phase Seven	Developing short communication/radio	March 2022	
	report to highlight project's findings.	March 2023	

Fertilizer Treatments: OMAFRA vs Modified Oregon

Nutrients	OMAFRA Tree Fruits	Modified Oregon		
Actual Nitrogen	3–5-year orchard: 54 lbs/acre	3–5-year orchard: 0.25-0.33 lbs/tree		
	6–7-year orchard: 87 lbs/acre	6–7-year orchard: 0.33-0.5 lbs/tree		
Phosphorus (Actual P ₂ O ₅)	If soil test Olsen P says 10-12 ppm: 62 lbs/acre; 16-20 ppm: 45 lbs/acre; >41 ppm: no application			
Potassium (Actual K ₂ O)	If soil test Ammonium Acetate K says 101- 120ppm: 62 lbs/acre	If soil test Ammonium Acetate K says 75-150ppm 200-300 lbs/acre		

Fertility Treatments for Split Comparison Test

Orchard 1: NO₃-N: 8.5ppm, P: 11ppm, K: 101ppm, pH: 6.9, OM: 3.2; 6yr. old

Fertility Treatments for Replicated Experiment

Orchard 3: NO₃-N: 11.7ppm, P: 18ppm, K: 110ppm, pH: 7.3, OM: 4.3; 4yr. old

Results: Yield Data from Split Plot Comparison

OMAFRA recommendations outperformed grower's practice at 2 out of the 3 sites.

Results: Yield Data from Replicated Experiment

OMAFRA recommendations resulted in the highest yield, followed by the modified Oregon recommendations.

Results: Baseline vs Fall Soil Nutrition

		Soil Nutrients (ppm)					
Site	Treatment	NO ₃ ⁻ Nitrogen		Phosphorus		Potassium	
		Baseline	Fall	Baseline	Fall	Baseline	Fall
Orchard 1	Control	8.48	-	11	9	101	86
	Grower		-		6		60
	Improved		-		22		375
Orchard 2	Grower	4.04	-	47	29	101	91
	Improved		-		30		145
Orchard 3	Control	11.74	-	18	11		102
	Grower		-		12	111	102
	OMAFRA		-		29	111	363
	Oregon		_		28		757

Except for P in Orchard 2 (which did not receive any phosphate fertilizers), improved management showed higher levels of residual P and K.

Results: Fall (August) Leaf Tissue Nutrition

Site	Treatment	Fall Leaf Tissue (%)			
		Ν	Р	K	
Orchard 1	Control	2.62	0.14	0.45	
	Grower	2.65	0.16	0.47	
	Improved	2.79	0.15	0.46	
Orchard 2	Grower	2.47	0.15	0.63	
	Improved	2.70	0.13	0.73	
Orchard 3	Control	2.21	0.14	0.67	
	Grower	2.20	0.13	0.68	
	OMAFRA	2.35	0.12	0.71	
	Oregon	2.59	0.14	0.82	

Improved management showed higher N and K in the leaf tissues but the proportion was lower than the soil levels.

Optimum levels: N = 2.2-2.5%, P = 0.14-0.15%, K = Over 1% (Olsen, 2013)

Results: Correlation Heat Map: Strength of Relationships

Only Tissue N is strongly associated with Yield ($r^2 = 0.7$): Fall leaf N could be a potential determinant of nut yield.

Learning

Control: Chloride = 0.13% Potassium = 0.82%

Modified Oregon: Chloride = 1.46% Potassium = 1.50%

Do not use Muriate of Potash (Potassium Chloride) as a source of Potash in the Spring: High salt index (116) and chlorine content (45-47%) leads to chlorine toxicity. Use Potassium Sulphate instead.

Very first year of the trial: Results are preliminary. Economic analysis will be conducted next year.

OMAFRA's recommendations appear to be effective over Oregon's recommendation: Research will be continued for the next few years.

Soil and plant tissue testing will help forecast nutrient demand/adjust soil pH.

Large soil test deficiency can be addressed at pre-plant.

In-season demand can be met through fertilizers and foliar applications (esp. micronutrients).

Consider 4Rs: Knowledge of nutrient management timing, place, rate and source is crucial.

- ➤ Horticultural Crops Ontario (HCO) and OMAFRA for funding.
- Collaborating farmers : Matt Walker (Walker farm), Martin Hodgson (Butternut farm), and Kevin Hodge (Hodge Orchard) for lending their orchard trees for treatment applications.
- Summer students for helping hand: to apply treatments and collect growth data.

References/Additional Online Resources

- Soil Fertility Handbook: OMAFRA Publication 611. \succ
- Guide to Hazelnut Production in Ontario: OMAFRA Publication 863. \geq
- Olsen, J. 2013. Growing Hazelnuts in the Pacific Northwest. OSU Extension Service, Oregon State University.

Orchard Nutrition

comprehensive approach to nutrient manage A ment will help you ensure that optimum nutrient levels are available for tree growth. A comprehensive trient management strategy includes the following:

- Soil analysis before planting (useful in predicting the need for potassium, magnesium, or lime applications)
- · Observations of annual shoot growth, leaf size and color, and crop yields
- · Leaf analysis (to indicate which elements are present in adequate, deficient, or excessive
- · Soil test results in mature orchards (to check for low pH values and evaluate the need for liming)

Jeff Olsen Extension horticulturist. Willamette Valle

Suspect a nutrient deficiency if the cause of poo tree performance is not primarily one or more of the following: lack of pruning, winter injury, poor soil drainage, shallow soil, physical injury, dise insects, poor weather, poor pollination, rodents, o limited moisture

When applying any fer the label directions

Leaf Tissue Analysis

Soil tests are one piece of the picture for predict ing fertilizer needs for established orchards. Leaf issue analysis provides further information about which elements are present in the trees in adequate, deficient, or excessive amounts (Table 1)

Thank you.

Feel Free to Reach Out:

tejendra.chapagain@ontario.ca

