Hazelnut Irrigation 101

Rebecca Shortt

Ontario Ministry of Agriculture Food and Rural Affairs

11 March 2020

- 1. Advantages
- 2. Irrigation system selection
- 3. Drip irrigation emitter selection

Advantages

- Good establishment
- Helps bring trees to production faster

Increases:

- Vegetative growth
- Nut weights
- Nut yields
- Nut size

Advantages

- Good establishment
- Helps bring trees to production faster

Increases:

- Vegetative growth
- Nut weights
- Nut yields
- Nut size

- Reduces number of blanks
- Spring irrigation can positively affect nut production in the following year

This picture shows a filbert and pecan orchard in September 1990, the year of its planting.

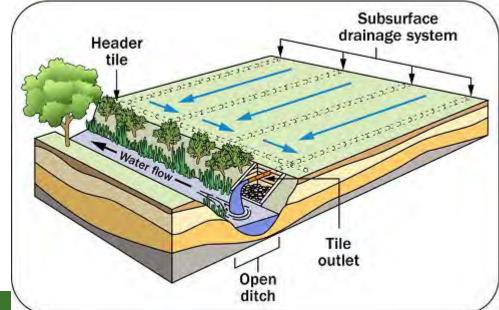
Here is the same orchard 34 months later, having benefitted from a trickle irrigation system.

French Research 1980s

- Although its water requirement is not high, this species is very sensitive to drought stress (Mingeau et al 1994)
- Ennis and Fertile de Coutard
- Kc=0.8

Nebraska study 2003

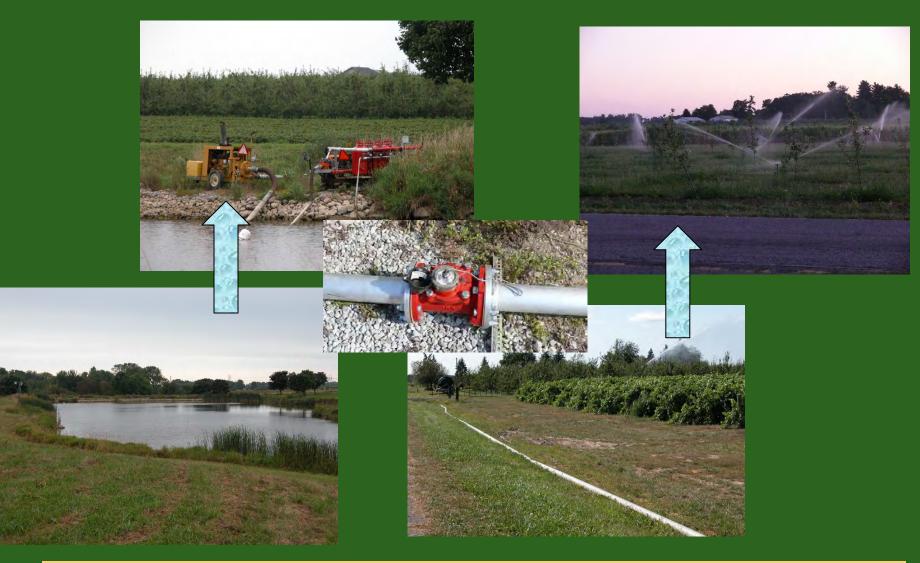
- Nut production was not affected by water treatment (Awada and Josiah 2004)
- All trees watered in establishment year and as needed in year 2
- Treatment started in year 3, no difference in soil moisture in May-June because of sufficient rainfall.
- American Hybrids 88BS, G17, GEL502, BOX1. 176.8 g/plant to 30.3 g/plant (nut clean weight)



 Some crops can survive with low water, but that doesn't mean they will be productive in dry conditions

 Hazelnut trees are medium-rooted with the majority of the root system in 0.5 -1m of soil if the field has adequate drainage

- Tile drainage should be installed between every row or every other row
- On some very deep sandy soils, tile drainage is not necessary
- Drain depths should be 750mm or deeper (max 1,200mm)


BMPs for HazeInut Irrigation

- Hazelnut trees should be irrigated every year during periods of low rainfall.
- Irrigation is most important in establishment to promote adequate root development.
- Sufficient water must be used to wet the entire rooting zone.

Critical Hazelnut Irrigation Periods

- 6 weeks post-bloom (can affect both current crop as well as flower set for following year)
- Nut fill from mid July to mid Aug

Irrigation System

Sprinkler Irrigation

Traveling Gun Irrigation

Drip Irrigation

Filters for Drip Irrigaiton

Fertigation and backflow prevention

Drip Irrigation: Water Use Reduction? % of field covered by canopy

Irrigation Frequency in Ontario Implications for Efficiency

Irrigation Equipment Cost \$/acre

Irrigation System	15 acres	50 acres	100 acres
Sprinklers (hand move)	1540	980	-
Travelling Gun	1985	900	700
Drip Tube	3040	2550	2325

Power supply not included

Summary

- Consider operational preferences
- <u>http://www.omafra.gov.on.ca/english/engineer/</u> <u>irrigation.htm</u>
- Google "Irrigation OMAFRA"

Appendix 1

Emitter Selection

Rebecca Shortt

Ministry of Agriculture, Food and Rural Affairs

Emitter Selection

- X = Flow Exponent
- Cv = Manufacturer's coefficient of variation

Types of Emitters

- Laminar Flow Emitters
- Turbulent Flow Emitters
- Pressure Compensating Emitters

Flow Exponent X

Flow Exponent (x)	Emitter Type
0.0	Pressure Compensating Emitter
0.1	
0.2	
0.3	
0.4	
0.5	Fully Turbulent Flow
0.6	
0.7	Mostly Turbulent Flow
0.8	
0.9	Mostly Laminar Flow
1.0	Fully Laminar Flow

Manufacturer's Coefficient of Variation Cv

Coefficient of Variation (Cv)	Classification	
<0.03	Excellent	
0.03 - 0.07	Average	
0.07 - 0.10	Marginal	
>0.10	Poor	