Hazelnuts - developing Good Agricultural Practices

- Weed management
- Nutrient management

Todd Leuty, Orchard Horticulture / Forestry
Ontario Ministry of Agriculture, Food and Rural Affairs
Guelph, Ontario

Todd.leuty@ontario.ca phone (519) 826-3215

- Management of weeds, nutrients, irrigation
- Soil & leaf tissue testing, soil moisture probes

- Annual crops, food quality, income \$
- Irrigation, insecticides, fungicides, herbicides

Weed Management

Sucker Management

Nutrient competition - weed management

Weed management - optimum use of fertilizer by the trees

Interpreting a soil test report

A & L Canada Laboratories Inc.

Report Number: Account Number: 95001

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

		Times Day	e:Sep 20, 201	•		30	IL TEST	KLI									Pag	10:1/
		Organio Matter	Phosphor Bloarb	us - P ppi Bray		Potassium K ppm	Magnesium Mg ppm	Calolum Ca ppm		Sodium Na ppm	pH P	H Buffer n	CEC		ercent i % Mg		turation % H	G % Na
	3529 3530	4.0 3.5	13 L 16 L	18 1 20 1		106 M 70 L	145 L 140 L	3800 VH 2070 VH		18 VI 13 L	7.6 7.7		20.5 11.7	1.3 1.5	5.9 9.9	92.5 88.2		0.3 0.5
	Sulfur S ppm				Iron Fe ppm	Copper Cu ppm	Boron B ppm	Solutio Salts ms/om	8a	turation %P	Aluminum Al ppm	Saturati %Al	on Niti	trate rogen N ppm	K/Mg Ratio	ENR	Fleid ID	
)1-GAR)2-FIE	11 VL 8 VL			VH VH	62 VH 75 VH	1.1 M 0.8 M	0.8 M 0.6 M			1 VL 1 VL	672 758	0.0 G 0.0 G			0.22 0.15	52 47		

E VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC

SOIL FERTILITY GUIDELINES (Ibs/ac)

Sample Number	Сгор	Yield Goal	Lime Tons/Aore	N	P206	K20	Mg	Ca	8	Zn	Mn	Fe	Cu	В
01-GAR	Hazelnut Trees		0.0	75	100	160	25	0	20	4.5	0	0	0	1.5
02-FIE	Hazelnut Trees		0.0	75	130	160	15	0	20	5.0	0	0	0	2.0

NUTRIENT MANAGEMENT QUIde

Hazelnuts

J. Olsen

A comprehensive approach to nutrient management will help you ensure availability of optimum levels of nutrients for tree growth. Components of a comprehensive nutrient management strategy include:

- Soil analysis before planting (useful in predicting the need for potassium, magnesium, or lime applications)
- Observations of annual shoot growth, leaf size and color, and crop yields

Suspect a nutrient deficiency if the cause of poor tree performance is not primarily one or more of the following: lack of pruning, soilborne pests, winter injury, poor soil drainage, physical injury, disease, poor weather, insects, poor pollination, rodents, deep cultivation, shallow soil, or limited moisture.

Leaf tissue analysis

Search Google: hazelnut nutrient management, Oregon

http://extension.oregonstate.edu/umatilla/mf/sites/default/files/Hazelnut_Nutrient_Management_Guide_EM8786-e.pdf

New orchards: pre-plant soil tests

Potassium (K)

Broadcast K and plow it under during preparation of land for planting. Apply according to Table 5.

Table 5.—K application rates for new hazelnut orchards.

If soil test	Apply this amount
for K is	of K_20
(ppm)	(lb/acre)
0-75	300-400
75–150	200-300
over 150	0

Lime – pH adjustment

Table 6.—Lime application rates for hazelnut orchards.

If the buffer test for lime is	Apply this amount of lime (ton/acre)
Below 5.2	4–5
5.2-5.6	3-4
5.6-5.9	2–3
5.9-6.2	1–2

Aim for pH 6.5 - 7.0

Magnesium (Mg)

Broadcast Mg and plow it under during preparation of the land for planting. If the soil test for Mg is less to 0.5 meq/100 g of soil, apply enough dolomite to limp ph 5.6. Dolomite contains magnesium and calcium carbonate and acts in a manner similar to limeston correction of soil acidity.

Intercrops add complexity and profitability during orchard establishment

Leaf tissue analysis – ideal range for each hazelnut nutrient

Nutrient	Deficiency	Below normal	Normal	Above normal	Excess
Nitrogen (% dry weight)	<1.80	1.81-2.20	2.21-2.50	2.51-3.00	>3.00
Phosphorus (% dry weight)	<0.10	0.11-0.13	0.14-0.45	0.46-0.55	>0.55
Potassium (% dry weight)	<0.50	0.51-0.80	0.81-2.00	2.01-3.00	>3.00
Sulfur (% dry weight)	<0.08	0.90-0.12	0.13-0.20	0.21-0.50	>0.50
Calcium (% dry weight)	<0.60	0.61-1.00	1.01-2.50	2.51-3.00	>3.00
Magnesium (% dry weight)	<0.18	0.19-0.24	0.25-0.50	0.51-1.00	>1.00
Manganese (ppm dry weight)	<20	21–25	26–650	651–1,000	>1,000
Iron (ppm dry weight)	<40	41–50	51–400	401–500	>500
Copper (ppm dry weight)	<2	3–4	5–15	16–100	>100
Boron (ppm dry weight)	<25	26–30	31–75	76–100	>100
Zinc (ppm dry weight)	<10	11–15	16–60	61–100	>100

Nitrogen (N)

Young trees

Apply N only after 2 growing seasons have passed. Young trees should grow 18–30 inches annually.

Table 2.—Nitrogen application rates for young hazelnut trees.

Age (year)	Apply this amount of N (lb/tree)
0–2	0
3–5	0.25-0.33
6–7	0.33-0.50
8–10	0.50-0.75

Nitrogen for mature hazelnut trees

Table 3.—Leaf analysis guide for N application.

% leaf N	AI	oply this amount of N	
in August	Status	(lb/tree)	
Under 1.8	Severe deficiency	3.0 (2 years)	
1.8 - 2.2	Deficiency	2.0-3.0	
2.2 - 2.5	Optimal	1.5-2.0	
Over 2.5	Excess	0	

Apply N in a 1- to 2-foot I broadcast throughout the orc 20–30 percent for a broadcas according to the results of learnesponse of the orchard. **Not** years, might lead to excessive

Nutrients for mature hazelnut trees

- Phosphorus (P) only apply if test indicates deficient
- Potassium (K)

% leaf K	Status	Apply this amount of K ₂ 0 (lb/tree)
Under 0.5	Severe deficiency	8–10
0.5 - 0.7	Deficiency	6–8
0.7 - 0.9	Borderline	0
	(test again in 1–2 years)	
Over 1.0	Optimum	0

- Boron improves nut set if leaf analysis is below 30 ppm
- Magnesium
- Zinc (Zn)
- Sulfur (S)

Grazing livestock in commercial orchards – not a new idea

No graze before harvest – post harvest only

Hazelnuts - developing Good Agricultural Practices

Thank you

Todd Leuty, Orchard Horticulture / Forestry
Ontario Ministry of Agriculture, Food and Rural Affairs
Guelph, Ontario
Todd.leuty@ontario.ca phone (519) 826-3215